

Management of Climatic Extreme Events in Lakes and Reservoirs for the Protection of Ecosystem Services

Data Quality Control and Management

Don Pierson

Uppsala University

MANTEL ITN Workshop

Tartu, Estonia, September 2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 722518.

Changes in Data Practice That Will Affect Your Work as a Scientist

- It is now expected that all data collected by scientists will be archived and available to others on request.
 - Monitoring data
 - Data generated by analysis and simulation
 - This is now required by funding agencies.
 - But there is very little financial support for this
- It is now expected that all data associated with a peer reviewed paper be deposited in an archive that is publicly available.
- Computer programs scripts and other data files (spreadsheets etc.) should also be available with data files so that work can be replicated

Challenges of Data Intensive Science

- Large amounts of data to be archived. Easily in the 100 MB-GB range
- Many different programs and software is used
 - Open Source
 - Proprietary
- Complex Workflows
 - Can be difficult to repeat or remember
 - May change over time
- Programing
 - Many languages always changing
 - Inevitable bugs and reanalysis
- SAVING ALL OF THIS SO THAT OTHERS CAN USE AND UNDERSTAND IT TAKES TIME!
 - However this also means that you will be able to remember and understand what you did several years ago!

What to Do?

- A Better More Rational Way Organize by Project!
- Realize from the beginning that you are going to need to produce a data archive, and also document all programs developed workflows etc
- Make data archiving and documentation part of day to day work so it is essentially done by the time your paper is written.

Caveats and Qualifiers

- This is not necessarily what I do myself, but it is what I think we probably should be moving towards.
 - New Students don't have to break as many old habits
- Much of what I describe is related to documenting simulations and workflows associated with them. Other types of data may require other strategies.
- There is no fixed way to best organize your data. What I present is meant to stimulate discussion

Some Principle for Project Based Organization (With High Ambitions)

- All data from initial measurements to final manuscript are in a single directory.
 - Initial measurements (automated HF data and lab data)
 - Data analysis (statistical, custom programs, model simulations visualizations)
 - Correspondence and documentation files
 - Manuscript (all versions and revisions)
- All programs input files, output files, and control scripts are in this directory.
 Work can be reproduced easily
 - Allows other to check your work
 - Allows you to rerun your analysis when you discover inevitable errors
 - To some extent the workflow can be considered the documentation
- Allows easy development of data archives supplementary material etc.
- Project directory is always backed up on a regular basis

Some Examples of How My Work has Slowly Evolved Towards Project Based Organization

NYC DEP Modeling Group – Four Commandments of Model Data Management

- Thou shall save and archive data in ASCII format
- Thou shall save date and time in ISO standard format in the first column of the data file
- Thou shall have informative file headers
- Thou shall create a brief but informative text file in simulation directory that describes input files output files and the programs that created the output.

Thou shall save and archive data in ASCII format

- Why ASCII?
 - Still only other universal file format (at least that I know of)
 - Will ALWAYS be readable by others. Not linked to proprietary software.
 - Easy to compare different versions of files
- Other open source advanced file formats (good but more complicated to work with) Support available Phyton MatLab IDL etc)
 - HDF mainly spatial data
 - Net CDF mainly climate and met data
 - Viewers are available
 - Key outputs can still be saved as ASCII
- Propriatary software (Excel, JMP, SAS, Vensim, Stella etc) Powerful software for interactive analysis. Easy learning curve.
 - Input and output can usually be stored in ASCII format.
 - None read HDF or NetCDF

Thou shall save date and time in ISO 8061 standard format in the first column of the data file

- ISO format yyyy-mm-dd hh:mm
- https://www.iso.org/iso-8601-date-and-time-format.html
- Now understood by Excel
- Save lots of time and errors
- Easily parsed in to components
- Allow sub-programs or proceedures to simplify file reading
 - Format known
 - Position known
 - Even better if you fill in all missing rows

Thou shall have informative file headers

- Date that file was created
- Name of program that created the file
- Input files to the program that created the file
- Name of Analyst
- Blank line
- Column headers
- Column units

Example of File That Meets Commandments 1-3

Thou shall create a brief but informative text file in simulation directory

- Date
- Analysist name
- Purpose of simulation
- Files in the directory
 - Input
 - Output
 - Other
- Informative descripition
- But concise enough that it is actually read

Dir_Info.txt File That Meets Commandment 4

Workflow Log File Provides Self Documentation

Some Examples of How I Try to Use Project Based Organization

Example of Project Based Organization Met data Quality Control

Documentation in Project Directory

Descriptive Text File in Directory

Good header practice – self documentation

ISO time format