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Mailn research interests

* Numerical modelling
— GCM, RCM, EBM, etc

— prognostics and diagnostics

 applications
— windstorms .
— atmospheric-lake coupling [
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o

Difference between weather & climate o

 Weather is a temporary combination of a
number of variables defining the state of the
atmosphere

 Whereas climate may be defines as

— series of atmospheric states above a place In
their usual evolution

— climate may be described by the statistics of
these variables

e air temperature and precipitation are the «main»
descriptors

« cyclic evolution (seasons)
— relation with episodic events ?!



Zonal statistics
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Example : monthly-mean air temperature
at screen level over alocation

Temperature, Geneva, Switzerland
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Schematic view of weather & climate

Geneéve-Cointrin (411 m)
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Daily-average 2m temperature distribution at Payerne 1981-2010
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QU antiles (Wikipedia)

 |n statistics and the theory of probability, these are
cutpoints dividing the observations in a sample
Into contiguous Iintervals with equal probabilities

— there is one less guantile than the number of groups
created

if the sample is made of 100 obs

there are 25 members within each group
of quartiles

Q, is also called «median»

Frequency

N
I I -

Qi g, Variable (units)



Definition of extreme events
(Beniston et al., 2007)

» Rare

— Events that occur with relatively low frequency/rate. For example, the
IPCC (2001) defines “an extreme weather event” to be an event that is
rare within its statistical reference distribution at a particular place.
Definitions of “rare” vary, but an extreme weather event would normally
be as rare or rarer than the 10 or 90t percentile .

 Intense

— Events characterized by relatively small or large values (i.e. events that
have large magnitude deviations from the norm); ATT! not all intense
events are rarei

- for example, low precipitation totals are often far from the mean precipitation but
can still occur quite frequently

e Severe

— Events that result in large socio-economic losses; severity is a complex
criterion because damaging impacts can occur in the absence of a rare
or intense climatic event

» for example, thawing of mountain permafrost leading to rock falls and mud-slides



Distributions & quantiles (1)

Temperature distributions

Geneva, Switzerland
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Distributions & quantiles (2)

» Cold events in January when T < T g erc

1864, 1871, 1880, 1887, 1891, 1893, 1895, 1905,
1914, 1929, 1940, 1942, 1945, 1963, 1985

* Hot events in July when T > Tggnerc

1870, 1905, 1911, 1921, 1928, 1950, 1952, 1983,
1994, 1995, 2003, 2006, 2010, 2013, 2015




Distributions & quantiles (3)

Precipitation distributions
Geneva, Switzerland
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Distributions & quantiles (4)

« «Dry» February when pcp < PCP10thperc

1868, 1887, 1891, 1896, 1905, 1920, 1932, 1934,
1942, 1949, 1956, 1959, 1965, 1993, 2012

1930 1950 1970 190

* «Wet» Oct when pcp > pCpgoinperc

1870, 1872, 1875, 1889, 1896, 1923, 1926, 1928,
1939, 1952, 1988, 1992, 1993, 2003, 2004




Extreme value distributions

«a simple example»

* Given monthly mean T, from 1864-2016, so N = 153 (cf slide #7)

- Select yearly maximum values, T..., and order them In
Increasing magnitude (m=1, 2, ..., N)

 Assign empirical probabilities () to these ordered T, SO as to
determine CDF(T,.,)

« Compute u = -In{-In[CDF(T ,,,,)1}
« Fit a straight line to (T, ; U)
« Probability of T, not being exceeded is trivial
— CDF(Tms)=e°, and thus return values can be computed !

eeeeeeeeeeeeeeeeeeeee itzerland u(year) CDF : Geneva Return Values
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Quantile regression

 Quantile regression aims at estimating
either the conditional median or other
guantiles of the response variable

— «extension» of the linear regression



Why QR ?

* QR analysis relevant if a distribution does not
evolves a stiff block over time

stiff block after before

before

al after

% occurrence

real after

« You may want to know more about the
evolution of some extreme values such as
90" centile (or other quantiles) !

téphane Goyette - Tartu, Estonia, September 4, 2017 18



Example: evolution of the yearly
«guartiles» 1864 - 2016 in Geneva
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* ... similar analyses can be carried out with
HF observations

* Results may show (or not) some
— periodicity, more or less frequent

— these latter may also vary with time
* tendencies
* return periods/values



How can episodic events be determined,
identified ?!

* Are these events episodic ?

— passage of fronts, monsoon, mid-latitude wind
storm, «the course of seasons» ?!

— thunderstorms
— forest fires
— seasonal river discharge in a lake

* Link(s) with «periodic events» ... If any ?!
* Link(s) with «extreme events» ... If any ?!



How can episodic events be defined?

* Inthe atmosphere ! (not heard about this so far...)

* Inlakes!
— in combination with surface forcing ?!
* low/high winds
* low/high temperature

«  low/high precipitation links with extremes ?!
* low/high river discharge
*  Def. (Jennings et al., 2012)

— Inlakes, [episodic] events are characterised by abrupt changes in physical, chemical and/or biological parameters that are
distinct from previous background levels and are often driven by sudden changes in weather and in particular extremes in
precipitation, wind or temperature

594 E. Jennings et al.
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Fig. 1 ({a) water temperatures in Blelham at depths of 1-8 m (thin black line-thin grey line and dashed thin black line-dashed thin grey line} and
cube of the wind speed (thick black line); {(b) temperatures at Yuan Yang at depths of 0-3 m (thin black line-thin grey line) and hourly
precipitation (thick black line); (c) temperature difference in Blelham between 1 and 5 m {thin line) and oxygen concentration at 5 m (thick line
and circles); {d} temperature difference in Yuan Yang between epilimnion and hypolimnion (thin line) and oxygen concentration at 0.5 m (thick
line and circles). Black arrows indicate iming of change in meteorological driver.
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Questions

« Should these changes Induce
«permanent» impacts / regime shifts In
lakes?

« Should we expect transitive - intransitive -
almost intransitive changes ?!

State Equilibrium conditions of non-linear systems
Transitive systems _ _ __=-= it A
- -7 Almost intransitive systems
Pd - -, - -

-7 L7

//
. e B

Intransitive systems
Tim
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Discussion and synthesis
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Multiple dowscaling
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Atmosphere-lake coupling (1)

Application of the Canadian Regional Climate

1) Application USing a RCM Model to the Laurentian Great Lakes Region:

Implementation of a Lake Model

Stéphane Goyette.® N.A. McFarlane and Gregory M. Flato
Canadian Centre for Climate Modelling and Analysis
Meteorological Service of Canada
F, PO. Box 1700, Stn CSC, Victoria
air British Columbia VSV 212

snow E

ice
[Original manuscript received 12 January 1999; in revised form 6 March 2000]

ABSTRACT This study reperts on the implementation of an interactive mived-layer/thermody-

F
; Mixed-layer H namic-ice lake model coupled with the Canadian Regional Climate Model (CRCM). For this

application the CRCM, which uses a grid mesh of 45 km on a polar siereographic projection,

10 vertical levels, and a timestep of 15 min, is nested with the second generation Canadian

T General Circulation Model (GCM) simulated output. A numerical simulation of the climate of

watar T eastern North America, includmg the Laurentian Great Lakes, is then performed in order fo

F. evaluate the coupled model. The lakes are represented by a “mixed layer” model to simulate
i the evolution of the surface water temperature, and a thermodynamic ice model to simulate
evolution of the ice cover. The mixed-layer depth is allowed to vary spatially. Lake-ice leads
! H ! are parameirized as a function of ice thickness based on observations. Results from a 5-year
e 1-g —’E‘_ £ _’; integration show that the coupled CRCM/lake model is capable of simulating the seasonal

H i evolution of surface temperature and ice cover in the Great Lakes. When compared with lake
climatology, the simulated mean surface water temperature agrees within (.12°C on average.
The seasonal evolution of the lake-ice cover is realistic but the model tends to underestimate
the monthly mean ice concentration on average. The simulated winter lake-induced precipita-
tion is also shown, and snow accunmulation patterns on downwind shores of the lakes are
[found to be realistic when compared with observations.

Fig. 1 Schematic of the fluxes involved in the mixed-layer and thermody

® resuME Cet article décrit un modéle de lac interactif de type «couche mélangée/glace ther-
modynamiquey qui a été couplé avec le Modéle Canadien de Climat Régional (MCCR). Pour
cette application, le MCCR, utilisant une maille de 45 km sur une projection stéréographique
polaire, dix nivemux dams la verticale ef un pas de temps de 15 minutes, est piloté par des don-
nées simulées avec le Modéle de Circulation Générale canadien de seconde génération
' (MCGII). Une simulation numérique du climat sur I'est de 1'Amérique du Nord, incluant les

10 Grands Lacs Laurentiens, est réalisée qfin d'évaluer le modéle couplé. Les lacs sont

5 *Comresponding author’s e-mail: stephane. govette @unifr.ch

ATMOSPHERE-OCEAN 38 (3) 2000, 481-503  0705-5900/2000/0000-0481%1.25/0
© Canadian M logical and O« hic Society

-

Fig 2 Laurentian Great Lakes “annual mean” mixed-layer depths in m. Isobaths shaded every 5 m

TaBLe 1. Great Lakes mixed-layer depths in metres.

Mixed-layer
depths (m) in Huron

CRCM Superior  Michigan  Georgian Bay Erie Ontario
Mean value 25 14 16 11 13
Maximum 3 18 20 14 15
Minimum 17 5 5 5 1

Stéphane Goyette - Tartu, Estonia, September 4, 2017



Atmosphere-lake coupling (2)

1) Application using a Single Column Modei
<IZ<>Z[>
v

VA

sl |
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What’s a SCM ?

« As the name suggests, an SCM is
analogous to a grid column of a more
complete global/regional climate model




P

Why doing SCM &

Cheap In terms of computer resources
Results “easier” to analyse
Useful to test parameterizations

Sensitivity studies
— Impact of changing surface types : land = open water



Application to Lake Geneva

/
/

* Model setup
— column located at 46.2°N : 6.1°E

— simulation : one year 1990
« control run : solid surface
« experiments : lake (open water)

. |



Lake Geneva layer-averaged temperature
1990

Water temperature ("C)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct MNov Dec

Figure 2. Evolution of Lake Geneva layer-averaged water temperature from January 15 to December 31, 1990. Also highlighted the three time-periods selected for the analysis
of thiz case study: first one from April 28 to May 30, the second from Aug 13 to September 16, and the third from Movember 26 to December 30, 1990.



Atmospheric profiles

Apr. 28 — May 30 Aug. 13 — Sep. 16 MNov. 26 — Dec. 30
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Figure 1. Atmospheric temperature, specific humidity, and windspeed mean profiles over solid and open water surfaces for the three time-pericds selected for the analysis of this
case study: first one from April 28 to May 30, the second from Aug 13 to September 16, and the third from Movember 26 to December 30, 1990.



Rare events

. On Feb. 18, 1979, low altitude areas of the s
Sahara desert recorded their first snowfall in & :

living memory

* In 2005, Alaskans spotted their state’s first ever
tornado

 The town of Marble Bar in Western Australia is
legendary for its hot weather. From Oct. 31,
1923, to April 7, 1924, the tiny town scorched

with 160 consecutive days over 100°F (37.8°C)

- a world record

. etc... W

Stéphane Goyette - UNIGE - Tartu, Estonia, Sept 4, 2017

36



Intense events

o Katrina was the fifth hurricane of
the 2005 Atlantic hurricane season:;
it was an extremely destructive
storm that hit the Gulf Coast of the
United States in August 2005

 Summer 2003 heat wave
« January 2017 European cold wave

+ etc...H

Stéphane Goyette - UNIGE - Tartu, Estonia, Sept 4, 2017 A frozen fountain in Rome on 7 January 2017 37



Severe events

 Persistent rainfall, snowmelt, or
high levels of ground water g&:
flowing through cracked bedrock §

) Pl e £ = _ o &
The Mameyes mudflow disast arrio

may trigger a movement of soll or iy

1985. The mudflow destroyed more than

«
SN

100 homes and claimed an estimated 300

sediments -

 Debris flows (e.g. lligraben,
Switzerland)
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https://youtu.be/Fsh5E9m3PrM?t=11

